
Spatially Adaptive Techniques for Level Set

Methods and Incompressible Flow ∗

Frank Losasso † Ronald Fedkiw † Stanley Osher ‡

May 3, 2005

Abstract

Since the seminal work of [92] on coupling the level set method
of [69] to the equations for two-phase incompressible flow, there has
been a great deal of interest in this area. That work demonstrated
the most powerful aspects of the level set method, i.e. automatic han-
dling of topological changes such as merging and pinching, as well as
robust geometric information such as normals and curvature. Interest-
ingly, this work also demonstrated the largest weakness of the level set
method, i.e. mass or information loss characteristic of most Eulerian
capturing techniques. In fact, [92] introduced a partial differential
equation for battling this weakness, without which their work would
not have been possible. In this paper, we discuss both historical and
most recent works focused on improving the computational accuracy
of the level set method focusing in part on applications related to in-
compressible flow due to both its popularity and stringent accuracy
requirements. Thus, we discuss higher order accurate numerical meth-
ods such as Hamilton-Jacobi WENO [46], methods for maintaining a
signed distance function, hybrid methods such as the particle level set
method [27] and the coupled level set volume of fluid method [91],
and adaptive gridding techniques such as the octree approach to free
surface flows proposed in [56].

∗Research supported in part by an ONR YIP award and a PECASE award (ONR
N00014-01-1-0620), a Packard Foundation Fellowship, a Sloan Research Fellowship, ONR
N00014-97-1-0027, ONR N00014-03-1-0071, ONR N00014-02-1-0720, ARO DAAD19-03-
1-0331, NSF DMS-0106694, NSF ITR-0121288, NSF IIS-0326388, NSF ACI-0323866, NSF
ITR-0205671 and NIH U54 RR021813.

†Computer Science Department, Stanford University, Stanford, CA 94305.
‡Department of Mathematics, University of California Los Angeles, Los Angeles, CA

90095.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
03 MAY 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Spatially Adaptive Techniques for Level Set Methods and Incompressible
Flow

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stanford University ,Computer Science Department,Stanford,CA,94305

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Since the seminal work of [92] on coupling the level set method of [69] to the equations for two-phase
incompressible flow, there has been a great deal of interest in this area. That work demonstrated the most
powerful aspects of the level set method, i.e. automatic handling of topological changes such as merging
and pinching, as well as robust geometric information such as normals and curvature. Interestingly, this
work also demonstrated the largest weakness of the level set method, i.e. mass or information loss
characteristic of most Eulerian capturing techniques. In fact, [92] introduced a partial differential equation
for battling this weakness, without which their work would not have been possible. In this paper, we
discuss both historical and most recent works focused on improving the computational accuracy of the
level set method focusing in part on applications related to incompressible flow due to both its popularity
and stringent accuracy requirements. Thus, we discuss higher order accurate numerical methods such as
Hamilton-Jacobi WENO [46], methods for maintaining a signed distance function, hybrid methods such as
the particle level set method [27] and the coupled level set volume of fluid method [91], and adaptive
gridding techniques such as the octree approach to free surface flows proposed in [56].

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

41

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

The level set method computes the motion of an interface Γ of codimension
one that bounds a region Ω− ⊂ Rn. The level set function φ(~x, t) is a
Lipschitz continuous function with the following properties:

φ(~x, t) > 0 for ~x 6∈ Ω−

φ(~x, t) ≤ 0 for ~x ∈ Ω−.

Note that φ = 0 is typically included with the negative numbers so that
the interface Γ lies in between φ > 0 and φ = 0. Although embedding an
interface in a higher dimensional set may at first seem inefficient, it is this
higher dimensionality that provides for the automatic handling of topological
changes and the robust computation of geometric information.

The interface motion is given by a velocity field ~u(~x, t), which can be a
direct function of the interface geometry or specified externally. The velocity
field is typically defined in a band local to the interface with the bandwidth
depending on the discretization. The elementary equation used for interface
evolution is

φt + ~u · ∇φ = 0. (1)

Equation 1 was introduced for level set advection by Osher and Sethian in
the original level set paper [69] and denoted the level set equation. About
twenty-five years earlier, [57] discussed this same equation in the context of
combustion, and that community still largely refers to it as the G-equation
(replacing φ with G). Although [57] and others in the combustion com-
munity, see especially [102] and related work, originally focused on the G-
equation in the context of theory and asymptotic analysis, the numerical
techniques pioneered by [69] later enabled that community to explore the
G-equation in numerical simulations as well. It is interesting to note that
[69] cited [57] in the context of combustion as an application area, appar-
ently without noticing that the level set equation already had a name and
a widespread non-numerical following in combustion. On another note, two
rather obscure works [25, 26] (published about 10 years before [69]) have
recently surfaced bearing a remarkable resemblance to the level set method.

The discretization of the level set equation can lead to a significant nu-
merical dissipation that usually manifests itself as a loss of mass (or volume)
in areas of high curvature or other under-resolved regions. Those who use
competing methods typically cite this mass loss as the main reason for doing
so. One alternative to level set methods is the front tracking approach, see
e.g. [99] which pioneered numerical methods for incompressible two-phase

2

flow. Lagrangian front tracking methods do not suffer from the typical ac-
curacy problems characteristic of Eulerian methods, since the discretized
interface consists of particles that can be advected by simply solving the
ordinary differential equation ~xt = ~u(~x). The drawback however is that
the elements that make up the interface (segments or triangles in two or
three spatial dimensions, respectively) can become highly distorted leading
to a loss of accuracy as the interface is deformed. Moreover, if the interface
changes topology, some difficult remeshing is required (especially in three
spatial dimensions) to restore the interface elements to a usable and accu-
rate state. We refer the interested reader to [104] which uses a combination
of a mesh refinement technique and a least-squares based scheme to smooth
deforming elements and to [40] which describes a simplified front tracking
algorithm and compares it to the level set method. In an attempt to im-
prove the accuracy of the level set method, [27] proposed hybridizing the
Eulerian level set method with tracked Lagrangian particles. This particle
level set method draws its accuracy from the tracked particles and derives
its connectivity from the level set approach combining the best aspects of
both methods. The result is a robust, accurate method that is simple to
implement even in three spatial dimensions.

Another alternative to the level set method is the volume of fluid (VOF)
method, see for example [8, 73]. The basic idea behind this method is to dis-
cretize the equations for conservation of volume in either conservative flux
or equivalent form resulting in near perfect volume conservation except for
small over and under shoots. The main disadvantage of the VOF method
is that it suffers from the numerical errors typical of Eulerian schemes such
as the level set method. The imposition of a volume preservation constraint
does not eliminate these errors, but instead changes their symptoms replac-
ing mass loss with inaccurate mass motion leading to small pieces of fluid
nonphysically being ejected as floatsam or jetsam, artificial surface tension
forces that cause parasitic currents, and an inability to accurately calculate
geometric information such as normals and curvature. Possibly the most
disturbing aspect of the VOF method is that the reconstructed interface is
discontinuous between cells. [91] proposed hybridizing the VOF and level
set methods relying on the VOF method to better preserve volume and the
level set method to provide more accurate geometric information such as
normals and curvature. One drawback to their approach is that both meth-
ods are Eulerian and have similar numerical difficulties, as opposed to the
particle level set method which mixes an Eulerian scheme with a Lagrangian
one.

In order to obtain more accuracy in regions of the flow where it is re-

3

quired, adaptive methods can be employed. The goal of adaptive grid tech-
niques is to save on memory and/or processor time by placing more compu-
tational nodes in areas that are under-resolved. There are essentially three
separate approaches to adaptive level set methods. The most trivial ap-
proach involves allocating the full amount of memory everywhere, but only
computing near the interface as in [21, 1, 71]. The next simplest strategy to
implement are the adaptive mesh refinement (AMR) techniques pioneered
by [7] and later by [6]. In this approach, a number of uniform grids of
different resolutions are used. When more detail is required in a specific
region of the flow, a fine grained uniform patch is placed in that region.
See [88] for AMR used in conjunction with two-phase incompressible flow.
While AMR is the preferred technique for flows with shock waves where one
wants to minimize adjacent grid cells with different resolution to avoid spu-
rious shock reflections (see e.g. [20]), it is wasteful in the sense that many
fine grid cells are introduced in each patch even when only a few may be
required. A more efficient method is octree based, and a number of two
dimensional quadtree based level set methods were proposed in [86, 85].
[74] claims to have the first octree based implementation of single phase in-
compressible flow without level set or interfaces, and [56] proposes the first
octree algorithms for free surface flows using the level set method. Octree
based methods are much more general than AMR techniques, but the price
of this generality is a significantly more complicated data structure which
can pose difficulties for algorithm implementation and computational effi-
ciency. We address some of these inefficiencies and discuss possible remedies
below. Other interesting work includes the adaptive mesh redistribution of
[93] and the finite element based fluids of [94, 19, 18]. We also refer the
interested reader to the recent work of [41] which presents a quadtree based
implementation of the VOF method.

Level set methods have enjoyed widespread popularity in the compu-
tational physics community. For example, the ghost fluid method (GFM)
originally developed in [33] for two-phase compressible flow captures and
preserves discontinuities across an interface represented by a level set. Us-
ing the GFM, these level set algorithms have been extended to detonations
and deflagrations [34], mixed compressible and incompressible flow [11], two-
phase incompressible flow [50, 54], low speed flames [65], Stefan problems
for crystal growth [39, 38, 37], free surface flows [30], etc. For example, an
extension of the GFM was used to couple solid materials with strength to
chemically reacting compressible flow in order to study the dynamic response
of materials under loads generated by solid explosives. This methodology is
the “workhorse” behind the Department of Energy ASCI center at Caltech

4

for studying solid fluid interactions, see e.g. [32, 5, 4]. Also notable is the
recent work on a fully conservative version ghost fluid method [66].

Besides computational physics, level set techniques have been exploited
in a number of other areas as well. [68] (see also [96]) compiles an inter-
esting set of applications in computer vision. For example, [12] (see also
[103]) proposed a level set model for active contours to detect objects whose
boundaries are not necessarily defined by a gradient. This work was based
on the Mumford-Shah minimal partition functional [62]. The main draw-
back of this algorithm is the computational expense incurred from the par-
abolic nature of a nonlinear partial differential equation. To remedy this,
[36] showed a connection between the model proposed in [12] and a basic
k-Means algorithm with a nonlinear diffusion preprocessing step decreasing
the computational cost by a few orders of magnitude. The key observation
was that only the sign of the level set function is needed, and thus it suffices
to alternate between positive and negative values in order to produce seg-
mentation results. Later work by [83] obtained similar results with related
ideas, and now others are working in this direction as well, see e.g. [31].

Computer graphics has recently become a major application area for
the level set method and its derivatives. For example, [63] used level sets
to define a framework for efficient and intuitive surface editing operations.
This framework alleviated some of the most troublesome aspects of surface
editing. For example, self intersections cannot occur eliminating the need to
detect and correct them as a post-process, and the topological genus of the
surface can be changed trivially without consideration of explicit mesh con-
nectivity. These features make the method extremely simple and efficient.
A traditional drawback of implicit functions in regard to constructive solid
geometry and surface editing is the inability to represent fine or sharp fea-
tures, and the surface reconstruction technique of [51] attempts to identify
these features and insert the appropriate geometry. This was improved upon
by the dual contouring algorithm of [49] which uses Hermite data to repro-
duce the desired features without having to resort to feature identification
metrics. Computer graphics researchers have also started to use level set
methods to simulate water and and other liquids as introduced in [35, 29],
as well as fire [64]. More recent works include adaptive techniques [56],
solid/fluid coupling [42], vortex methods for rough water [78], and methods
addressing control [76]. These techniques have been used in a number of re-
cent films including mud for “Shrek” [35], liquid terminators in “Terminator
3” [76], wine in “Pirates of the Carribean” [76], the tar monster in “Scooby
Doo 2” [101], water in “The Day After Tomorrow” [45], the fish bowl in
“The Cat and the Hat” [23], etc.

5

There are countless other interesting applications of level set methods,
most of which are beyond the scope of this article. In particular, several
attempts have been made at extending the method to handle objects of
higher codimension [9, 48, 17], there has been interesting work on inverse
problems [10], and a few authors have combined level sets with finite element
methods in order to accurately describe cracks and fracture [100, 60]. We
refer the interested reader to the recent book [67] and the references therein.

2 Level Set Methods

Given a velocity field ~u(~x) and a level set function φ(~x), we evolve the inter-
face forward in time according equation 1. To accomplish this, ~u(~x) needs
to be defined (at least) in a band about the interface. In many instances,
such as two-phase incompressible flow, the velocity may already be defined
throughout the domain. However, in other cases such as free surface flows
where the velocity is defined on one side of the interface only, or Stefan
problems where the jump conditions that lead to the interface velocity are
defined only at the interface itself, one needs to extrapolate the velocity field
to fill a band of a few grid cells on both sides of the interface. [105] demon-
strated that a signed distance function tends to remain a signed distance
function if the velocity at each point is defined to be equal to the velocity
at the closest interface point, and a number of authors have proposed one-
way and two-way extrapolation techniques for accomplishing this, see e.g.
[16, 33, 2].

There are countless methods for evolving φ(~x) forward in time, and the
simplest scheme consists of either forward Euler time integration with spa-
tial upwinding or a fully multidimensional method of characteristics semi-
Lagrangian (see e.g. [84]) approach. The first approach has a CFL time step
restriction of 4t < 4x/ max |u|, while the second is unconditionally stable.
Unfortunately, both methods suffer from rather severe numerical dissipation
resulting in significant mass or characteristic information loss, and a signif-
icant portion of the level set research has been dedicated towards methods
for alleviating this difficulty. In fact, this has been the major criticism levied
against level set methods for incompressible flow. In the following we dis-
cuss some of these remedies including higher order accurate finite difference
schemes, preservation of signed distance functions, the coupled level set VOF
method, the particle level set method, and adaptive grid techniques.

6

2.1 Higher Order Accuracy

In order to alleviate numerical dissipation for hyperbolic conservation laws,
[44] introduced higher order accurate numerical methods based on essentially
nonoscillatory (ENO) polynomial interpolation of data. These methods were
extended to a finite difference framework in [81, 82] where the numerical
flux functions were calculated directly from a divided difference table of
the pointwise data. [81, 82] also introduced the notion of total variation
diminishing Runge-Kutta (TVD-RK). [69] extended the ENO method to
Hamilton-Jacobi equations using the fact that Hamilton-Jacobi equations
in one spatial dimension are integrals of conservation laws. This work was
generalized in [70].

ENO methods choose the smoothest possible stencil out of the potential
candidates, e.g. for third order ENO the smoothest of the three possible
candidates is chosen. [53] extended the ENO schemes of [81, 82] propos-
ing to take a convex combination of all possible stencils weighted by relative
smoothness. In the case of third order ENO, this allows one to obtain fourth
order accuracy. The basic idea is to weight the scheme towards central differ-
encing in smooth regions and towards ENO in regions with large gradients.
Later, [47] showed that a better choice of weights could lead to improved
results, for example in the third order ENO case one can obtain fifth or-
der accuracy. WENO was extended to Hamilton-Jacobi equations in [46].
This was a significant improvement as it reduces the error by approximately
an order of magnitude (for typical grid resolutions) when compared to the
third order HJ-ENO method. When combined with third order TVD-RK,
the HJ-WENO method proposed in [46] is considered to be state-of-the-art
for evolving the level set equation.

2.2 Making Signed Distance Functions

Unfortunately, it turns out that higher order accurate approximations (i.e.
ENO and WENO) of the level set equation are not enough. Certain flow
fields can cause the level set function to generate large gradients polluting
the accuracy of the finite difference approximations as shown in [61]. Thus,
researchers have focused on methods to keep φ from developing large gradi-
ents. In fact, it turns out to be even more useful to force φ to approximate
a signed distance function with |∇φ| = 1.

7

2.2.1 Reinitialization

In the original paper [69], the level set function was initialized as φ = 1±d2

where d is the distance to the interface and the “±” sign depends on which
side of the interface a grid point is located on. This was later changed to
be a signed distance function. After the advection of the interface, it is
uncommon for the level set function to remain a signed distance function,
which means that φ needs to be reinitialized at regular intervals in order to
limit numerical dissipation. A simple and accurate technique is to calculate
how far each grid point is from the zero isocontour of the level set directly.
This technique is quite expensive in practice, and as such cannot be used in
large real world examples or with schemes that require frequent reinitializa-
tion. A more practical alternative is to evolve the interface in the normal
direction at unit speed keeping track of the amount of time that it takes
for the interface to cross over each grid point. The crossing time gives the
distance value for a grid point. If we evolve the interface in both the normal
and negative normal direction at the same time, we obtain an equation of
the form

φτ + S(φ0)(|∇φ| − 1) = 0 (2)

which is commonly known as the reinitialization equation, proposed in [92].
Here S(φ0) is a smeared out sign function which is positive approaching 1 in
Ω+ and negative approaching −1 in Ω−. Standard Hamilton-Jacobi solvers
can be used on this equation including fifth order HJ-WENO and third
order TVD-RK. One difficulty encountered when solving equation 2 is that
the interface moves by a small amount due to numerical truncation error.
In an attempt to alleviate this difficulty, [89, 90] proposed a reinitialization
method that attempts to preserve the partial volume cut by the interface
in each cell. Although this method was shown to improve the quality of
the numerical results of HJ-ENO significantly, it does not have a significant
effect on the quality of results obtained with the more accurate fifth order
HJ-WENO.

2.2.2 Fast Marching Method

Instead of solving the partial differential equation 2 for a number of time
steps in fictitious time τ , one can instead start at the interface and march
outwards creating a signed distance function in a single sweep through the
data. The first method of this type was proposed by [97, 98], which extended
Dijkstra’s method for computing the taxicab metric to an algorithm for
computing Euclidean distance.

8

In order to apply this algorithm, one first needs to initialize all the grid
points adjacent to the interface with a “correct” φ value. These nodes are
then considered done, all their neighbors are considered close and all other
nodes are considered far. Next, all grid nodes in the close set have tentative
values of φ calculated using only values from done points. Then the smallest
of these is added to the done set, all its neighbors are added to the close set,
and the tentative values of these neighbors are calculated or updated using
the fact that there is now one more node in the done set. The algorithm
is terminated when a thick enough band of points around the interface has
been added to the done set. The selection of the grid node that has the
smallest tentative φ value is the slowest part of the algorithm, and it is
common to use a heap in order to efficiently select this point.

Although this method is only first order accurate, it is straightforward
to extend it to higher order accuracy as was done in [80] using an equivalent
finite difference formulation of the method (i.e. from [79]). When using the
higher order accurate version of the method, it is important to exercise more
care when initializing the values adjacent to the interface. [22] proposed us-
ing higher order interpolants and Newton iteration to initialize these points
more accurately. See also [37].

In order to illustrate the importance of accurately initializing the points
adjacent to the interface, consider the following example. First, consider
a lower order accurate method where each grid point that needs to be ini-
tialized searches in each Cartesian direction to see if the interface crosses
the edge connecting it to its neighbors. If so, we use linear interpolation
along the edge to find the location of the interface keeping only the closest
intersection point in each Cartesian grid direction. This results in anywhere
from one to three intersection points, and in the case of three points we pass
a plane through them and use the closest point on the plane as the distance.
In the case of two points we pass a line through them and calculate the
closest point on the line, and in the case of one point we use the distance
to it. Then we use the fast marching method to compute signed distance
value for points in a band near the interface, and use a ray tracing algorithm
to render the final result. The ray tracing algorithm uses a root finding al-
gorithm to calculate the location of the zero level set, and then uses the
normal calculated at that point for the shading. If we start with an analytic
signed distance function for a sphere, the results obtained after applying
the fast marching method ten times are shown in figure 1. Even though the
interface moves by only a small amount, the grid induced aliasing errors are
quite apparent.

In order to alleviate these problems, we propose finding the interface

9

Figure 1: An analytic sphere after ten repeated applications of the fast
marching method with standard initialization. Resolution is 100×100×100.

with a simple unbiased search algorithm. We place a particle at the point in
question, and then move it in the normal direction towards the interface by
an amount equal to the absolute φ value at that point. Then we interpolate
a new φ value, calculate a new normal at the new particle location, and move
the particle towards the interface once again. We continue this process until
the φ value at the particle location is within some tolerance of zero, and
then use the distance from the final particle location to the original location
as the distance value at the original point. If this process does not converge
after a certain number of iterations or the distance value calculated is larger
than a threshold, we use the cruder distance estimate given above. The
threshold we use is given by the closest intersection point found using linear
interpolation in the Cartesian grid directions, i.e. by the up to three points
calculated in the cruder version of the algorithm. Across a wide range of
numerical experiments, this algorithm seems to remove the typical “ringing
artifacts” seen in figure 1. Figure 2 illustrates how this new method removes
these artifacts.

2.3 Hybrid Methods

In the quest to prevent mass loss, both the level set evolution equation 1 and
the reinitialization equation 2 can be discretized with fifth order accurate
HJ-WENO schemes in space and third order accurate TVD-RK schemes in

10

Figure 2: An analytic sphere after ten repeated applications of the fast
marching method with modified initialization. Resolution is 100×100×100.

time. Unfortunately, for many applications, this is still not enough accuracy.
For example, figure 3 (reprinted from [27]) shows the “Enright test” where
a sphere is evolved in an incompressible flow field which contains a temporal
term that reverses the velocity half way through the calculation so that the
final state should be identical to the initial state. One can see that about
eighty percent of the mass is lost even with the use of fifth order accurate HJ-
WENO and third order accurate TVD-RK on both level set evolution and
reinitialization. Thus, researchers looked for other methods for improving
mass loss as opposed to pursuing even higher order accurate schemes. A
degree of success was achieved by hybridizing the level set method with other
interface tracking methods, i.e. the VOF method and Lagrangian particle
tracking.

2.3.1 Coupled Level Set Volume of Fluid Method

In [91], an algorithm for combining the level set method with the VOF
method was proposed, and the results obtained were superior to those ob-
tained by using either method on its own. In the VOF method, a volume
fraction variable F is defined in each cell representing the fraction of the cell
occupied by one of the fluids. It takes on a value of 1 in one fluid, 0 in the
other, and intermediate values near the interface. The volume fraction is
evolved in time using a conservative flux based (or equivalent) discretization

11

Figure 3: Even with higher order accurate numerical methods, the level set
method can exhibit large amounts of mass loss. Here about eighty percent
of the mass is nonphysically lost in an incompressible flow field. Reprinted
from [27].

of the conservation law for volume valid for incompressible velocity fields.
If truncation error dictates a value of F that is not between 0 and 1, F
is clamped to this range losing a negligible amount of mass in the process.
This small amount of mass loss is typically an order of magnitude or more
less than that lost in level set methods and is typically not an issue. After
advection, a piecewise linear interface representation is constructed by first
calculating the gradient of F in each interfacial cell to find a normal direc-
tion, and then adjusting the plane associated with this normal until it cuts
the cell in a manner that agrees with the local value of F . Note that this
leads to an interface representation that is discontinuous between cells, and
this discontinuity is one of the major drawbacks of the VOF method hinder-
ing its ability to robustly and accurately calculate geometric information.
It also leads to small pieces of fluid called flotsam and jetsam nonphysically
breaking off from the interface moving around with erroneous velocities. For
more on the VOF method, see the recent [73].

In [91], the piecewise linear interface is used to initialize a new signed
distance function φ at each time step. Then both F and φ are advected
forward in time, and the values of φ are used to more accurately construct
a gradient and normal for use in the piecewise linear interface reconstruc-

12

tion. Moreover, in cells with |φ| > ∆x, one can assume that there is no
interface present and clamp F to 0 or 1 (appropriately) regardless of the
current value of F minimizing the appearance of flotsam and jetsam, but
creating more mass loss than a standard VOF method. As an added bonus,
φ can be used to calculate geometric information such as curvature in a
more efficient and robust fashion than either using F or the discontinuous
piecewise linear interface representation. Although this method does obtain
improved results over both the level set only method and the VOF only
method, the reconstructed interface appears noisy and lacks time coherence
as can be seen in [58]. Moreover, the only way to remove unsightly and inac-
curate flotsam and jetsam is to delete it from the calculation nonphysically
removing mass. Finally, the advection of both φ and F , the piecewise linear
interface reconstruction, and the subsequent reconstruction of φ based on
this piecewise linear interface are all quite complicated and do not make the
best candidates for extension to adaptive and/or unstructured grids.

2.3.2 Particle Level Set Method

The particle level set (PLS) method was introduced in [27] as a numeri-
cal scheme that combines the accuracy benefits of Lagrangian front tracking
with the simplicity and efficiency of the level set method. Lagrangian marker
particles are passively advected with the flow and used to rebuild the level
set function in under-resolved regions where mass or information is lost.
One of the main benefits of the PLS method is that the reconstructed in-
terface still enjoys all the nice properties of the level set method including
continuity and smoothness (especially as opposed to VOF methods), robust
geometry information, temporal coherence, etc. Also, since the particles are
not topologically connected, the method does not suffer from the complexity
associated with standard front tracking methods, while still maintaining the
main benefit of accurately tracked particle locations. The general idea of
the particle level set method is to randomly seed two sets of massless marker
particles in a band near the interface. “Positive” particles are placed on the
φ > 0 side, and “negative” particles are placed on the φ < 0 side. The
particles are passively advected using velocities interpolated trilinearly to
the particle location and at least second order accurate Runge-Kutta time
integration.

When seeded, each particle is given a radius equal to its distance from
the interface clamped by some minimum and maximum values. Each parti-
cle is thought to define a level set of its own, identically zero on the surface
of a sphere given by its radius. For positive particles, the interior of the

13

Figure 4: The particle level set method does a much better job of preserving
mass even when lower order accurate finite difference formula are used. Here
only about one percent of the mass is lost. Reprinted from [27].

sphere is positive and the exterior is negative. This is reversed for negative
particles. After advecting both the particles and the level set, these particle
spheres are used to correct the level set values. First, one independently
constructs corrected level set functions φ+ and φ− corresponding to φ cor-
rected by either positive or negative particles respectively. The corrections
are done in a node by node fashion considering all the particles near the
node and the value of φ dictated by the sphere around each particle. When
constructing φ+, the nodal value of φ is taken to be the largest potential
value considering all nearby positive particle spheres and the current φ value
at the node. φ− is constructed independently with negative particles and
the minimum potential value. Then the two corrected level set functions φ+

and φ− are resolved into a single level set by choosing the one with minimum
magnitude at each grid point. These same types of corrections are applied
to reinitialization as well, except that the particle velocity is considered to
be zero for the reinitialization step. After reinitialization, the level set values
are used to modify the particle radii so that there is a closed feedback loop
in the process. Figure 4 shows the “Enright test” using the particle level
set method. Note the extreme improvement in the computed result where
the mass loss has been lowered from about eighty percent to around one
percent.

14

Recently, [28] showed that the particle level set method does not neces-
sitate high order accurate methods for the level set advection and reinitial-
ization. In fact, they showed that basic first order accurate semi-Lagrangian
advection was adequate for level set evolution while the first order accurate
fast marching method could be used for reinitialization with almost no re-
duction in accuracy. The only modification that seemed to adversely affect
the accuracy of the method was the reduction of the particle time integra-
tion from second to first order accuracy. Thus, it seems that the particle
level set method relies on the particles for accuracy and the level set for con-
nectivity truly combining the best of both methods as desired. Moreover,
the ability to use simple semi-Lagrangian advection with no CFL restriction
along with the fast marching method makes the particle level set method a
good candidate for both adaptive and unstructured grids.

2.4 Spatially Adaptive Methods

Typically, one only needs level set values near the interface and this has led a
number of researchers to optimize their calculations by only updating φ in a
band near the interface. See for example [21, 1, 71]. An interesting method
not considered by these authors would be to first use the fast marching
method to obtain a temporary value of the level set φ̂ in a band slightly
larger than required, and then solve the reinitialization equation using the
unmodified φ values in the band of interest and the fixed φ̂ values as an outer
boundary condition.

While all these methods reduce the computational time required, they
still require an inordinate amount of memory. In an attempt to alleviate
this, truly adaptive techniques are required. Patch based adaptive mesh
refinement (AMR) techniques [7, 6] are prevalent, and [88] used patch based
AMR in the context of two-phase incompressible flow. However, it is lim-
iting to restrict the adaptivity to block structured meshes as is made clear
by the following quote “The obvious first choice, suggested by the nested
hierarchical nature of the grid itself, is to use an octree in 3D or quadtree
in 2D.” from [3].

2.4.1 Octree Based Methods

[86, 85] proposed a number of techniques for moving interfaces on tree based
data structures. Quadtree meshes resolve the interface with almost optimal
efficiency since the computational complexity of advecting and reinitializing
the interface is O(N logN). This is achieved by refining near the interface

15

only, although using a graded tree with adjacent cells differing by at most a
factor of two is a common practice due to its simplicity. T-junction nodes
are nodes that do not have six (four) adjacent edges in three (two) spatial
dimensions, i.e. nodes that lie on the face (edge) of a coarse cell. [85] explores
the use of domain triangulations in order to ensure continuous interpolation
near T-junctions. Although a continuous interpolant can be formed by tri-
angulating the cells of the tree, this comes at the steep price of having to
perform the triangulation.

[56] introduced a new technique for discretizing the particle level set
method on an unrestricted octree mesh in the context of free surface flows.
As noted above, the particle level set method only requires first order accu-
rate semi-Lagrangian advection and the fast marching method for maintain-
ing a signed distance function. The level set function and the velocity field
are stored on the nodes of the octree allowing for highly efficient interpo-
lation of variables. To avoid difficulties near T-junction nodes, these nodes
were constrained to ensure continuous interpolation across cell boundaries.
Although the octree particle level set method places no restrictions on the
octree in terms of refinement levels, it is often beneficial to refine maximally
near the zero isocontour to achieve the greatest amount of accuracy. In fact,
if we restrict the octree to be finer near the interface and coarser away from
it, then the T-junctions will tend to have missing nodes in the directions
away from the interface where these nodes are not needed. That is, the fast
marching method can be readily applied at T-junctions simply by ignoring
the edge directions that do not exist. Moreover, when accurate level set
values are only required near the interface, maximally refining in a band
about the interface eliminates the presence of T-junctions there.

An efficient implementation of algorithms on octrees can be tricky.
There are several ways of implementing any given operation, and the naive
approach can be orders of magnitude slower and more difficult to implement
than a less obvious approach. The terminology that we use is as follows.
An octree cell has eight nodes (one at each corner), and six faces. A min-
imal cell is one that does not contain any children. A minimal face is one
that does not contain any smaller faces within it, i.e. both cells touching
the face are minimal. A minimal edge is one that does not contain any
other smaller edges, i.e. all cells touching the edge are minimal. Using iter-
ators to enumerate every minimal cell, face, edge or node in the tree greatly
simplifies implementation. [49] introduced a tree traversal algorithm that
efficiently enumerates every minimal edge in an octree using a number of re-
cursive functions. This algorithm can be extended to enumerate every node
in the tree simply by adding one more recursive function (nodeProc() in

16

their terminology). This function takes eight possibly non-unique cells and
recursively traverses the cells to find the leaf cells that the node is touching.
These iterator functions are readily implemented to map a general function
on every minimal cell, face, edge or node in the octree.

The operation that typically accounts for most of the computational
cost in a particle level set implementation on an octree is finding the leaf
cell that contains a given point. The naive implementation of this operation
starts at the root cell and recursively traverses the tree finding which of
the 8 child cells the point lies in. The computational complexity of this
operation is O(logN) as opposed to O(1) for regular array based lookups.
There are several ways in which this lookup can be significantly improved.
At the coarsest level we use a uniform block structured grid as opposed
to a single cell, and then each cell of this grid contains an octree of its
own. This type of implementation also allows the cell proportions to be
decoupled from the overall domain size, since the uniform base grid can be
of any dimension. The computational savings from not having to traverse
the tree from a single root every time a lookup is required are significant.
Several of the initial levels are skipped by performing an O(1) uniform grid
access followed by a significantly shorter tree traversal. For example, for
simulations that are running at 10243 effective resolution at the finest level
(octree of depth eleven), we typically use a uniform grid of 643 saving seven
levels for every lookup. With this octree topology, leaf cell lookups are a
factor of two faster in our experience.

The most common operation that is performed on the octree is the in-
terpolation of nodal data to an arbitrary location in space. This is accom-
plished by finding the leaf cell that contains the point in question, retrieving
the eight values for the nodes of the cell, and then trilinearly interpolat-
ing between them. The expensive part of this operation is finding the leaf
cell as described above, but can be made significantly cheaper by exploiting
locality noting that semi-Lagrangian advection involves finding the interpo-
lated value at a location close to the grid node being updated. The modified
version of the iterator described in [49] describes a node by the eight cells
that touch it (some cells may be duplicated in the case of nodes that lie
on the transition between cells of different sizes). One of these eight cells
will usually contain the semi-Lagrangian sample location, and a full tree
traversal may not be necessary in order to find the leaf cell. In our expe-
rience, this optimization decreases the computation time by more than an
order of magnitude in a typical octree particle level set simulation. When
the sample point is not in one of the cells directly touching the node, we
recommend using a neighbor traversal algorithm or a precomputed neighbor

17

Figure 5: Semi-Lagrangian particle level set deformation test on an unre-
stricted octree grid. Maximum resolution by the interface is 5123.

array in order to find the cell in question. This technique is frequently used
in the case of particle advection where particles typically move about one
grid cell per time step. Figure 5 shows the results of the “Enright test”
on an unrestricted octree with semi-Lagrangian level set advection, the first
order accurate fast marching method and second order particle advection.

We note that the octree approach can also be used for simulating objects
in higher than three spatial dimensions and for simulating objects in higher
codimension. See [59] for work in this direction.

3 Incompressible Flow

The incompressible flow equations are derived from the conservation of mass,
momentum and energy using the divergence free condition ∇ · ~u = 0 which
implies that the material in the flow does not compress or expand. Incom-
pressible flow approximates many liquids that we interact with in everyday
life and is of great interest in computational physics, computer graphics
and many other fields. Level set methods can be used to track the inter-

18

face between two incompressible fluids such as water and air. Each fluid
is simulated with the Navier-Stokes equations and variables such as vis-
cosity, density and pressure may be discontinuous across the interface. In
the presence of discontinuities, finite differencing leads to O(1/∆x) errors
that increase with grid refinement. Thus, the boundary conditions at the
interface are treated by either smearing discontinuous variables across the
interface or by treating the discontinuity directly in a sharp fashion.

[72] introduced the “immersed boundary” method in order to simulate
an elastic membrane immersed in an incompressible fluid flow. The main
idea behind the method is to use a delta function to smear out the numerical
solution about the immersed interface. This method was extended to a level
set formulation of two-phase flow in [92] (see also [13]), which used the level
set function to smear out the density and viscosity variables in a thin band
about the interface, e.g.

ρ(φ) = ρ− + (ρ+ − ρ−)H(φ) (3)

where ρ+ and ρ− are the discontinuous densities and H(φ) is a smeared out
Heaviside function. If similar smearing is applied to the pressure, one loses
the ability to model surface tension via [p] = σκ. This was remedied in both
VOF methods [8] and front tracking methods [99] by adding a term to the
momentum equations. In the context of level set methods, [92] added this
term as

δ(φ)σκ ~N

ρ
(4)

where δ(φ) is a smeared out delta function, ~N is the local unit normal,
κ is the curvature and σ is a constant. [95] recently discovered that level
set methods can suffer from O(1) errors with the typical delta function ap-
proach, and thus caution should be exercised when following this method-
ology.

An alternative to smearing out the variables across the interface is to
use a variant of the ghost fluid method [33], which treats the discontinuities
across the interface directly. The ghost fluid method was extended to the
variable coefficient poisson equation in [54] allowing one to solve

∇ ·
(

1
ρ
∇p

)
= f (5)

with jump conditions of [p] = g and [(1/ρ)∇p · ~N] = h given. The method
preserves sharp discontinuities in both p and ∇p across the interface. Later,

19

[50] illustrated that this technique is suitable for solving two-phase incom-
pressible flow without smearing the density or pressure values across the
interface. Moreover, the extra delta function forcing term from equation 4
is not required, since the pressure jump is modeled directly.

3.1 Free Surface Flow

Free surface flow assumes that the motion of one fluid completely dominates
the other, and thus this second fluid can be simulated as a constant pressure
fluid that exerts no other stress on the interface. A typical example would
be a large body of water interacting with air. An early version of free surface
flow was proposed by [43] which used marker particles to track the water.
This work was improved upon by [75] which proposed a subcell treatment of
the pressure boundary condition, and [14] which proposed improved velocity
boundary conditions at the free surface. Later, [15] proposed a method
which only required tracking particles near the interface. We also note that
[39] devised a technique that allows one to apply a second order accurate
pressure boundary condition without changing the symmetric nature of the
discretization, see [30].

[35] was the first to propose using level set methods with free surface
flow, and was also the first to couple particle methods to level set methods.
However, they only placed particles on the water side of the interface as op-
posed to [27] which placed particles on both sides of the interface. Figures
6 and 7, reprinted from [29], show the quality of results attainable using the
particle level set method with free surface flow. Here, the velocity boundary
condition at the interface was obtained by extrapolating the velocity from
the water into the air using the level set normals to determine the extrap-
olation direction. [87] proposed projecting this velocity to be divergence
free after extrapolating it. Further extensions include the incorporation of
surface tension effects in [30].

3.2 Free Surface Flow on Octrees

Methods for octrees are not yet common. For example, [74] claims to have
the first single-phase incompressible flow solver based on an octree data
structure. [74] used a standard splitting procedure where first an inter-
mediate velocity field ~u∗ is computed ignoring the pressure term, then the
pressure is solved for via

∇2p = ∇ · ~u∗/∆t (6)

20

Figure 6: Simulation of a glass of water being poured. Reprinted from [29].

and used to project ~u∗ to be divergence free,

~u = ~u∗ −∆t∇p. (7)

A major drawback of [74] was that the proposed discretization of equation
6 resulted in a nonsymmetric coefficient matrix for the pressure. Thus, a
multigrid solver was used to solve the linear system of equations for the pres-
sure. Although multigrid methods are optimal asymptotically, the constant
can be large when the solution possesses high frequencies. Interfaces, sharp
angles or even thin bodies restrict the efficiency of methods that rely on
multigrid solvers, see e.g. [24]. More recently, [55] noted that high frequency
fields need to be smeared out in order to alleviate convergence problems, and
pointed out that high order schemes have less favorable smoothing proper-
ties than low order schemes forcing them to use a combination of low and
high order to achieve both reasonable accuracy and convergence. In the
case of free surface flow, surface wave generation relies on horizontal pres-
sure gradients caused by stacking different heights of high-density fluids.
This behavior is excessively damped by density smearing causing increased
artificial viscosity and an overly viscous flow.

21

Figure 7: Simulation of a glass of water being poured. Reprinted from [29].

[56] extended [74] proposing a novel symmetric discretization of equation
6 that enables the use of iterative solvers such as the preconditioned conju-
gate gradient (PCG) method. This both alleviates the need for nonphysical
smoothing and allows one to model free surface flows without the difficulties
associated with topological changes incurred during coarsening and refining
domains when using multigrid methods on problems with interfaces.

Consider the discretization of equation 6 for a large cell with dimensions
4x, 4y and 4z neighboring small cells as depicted in figure 8. Since the
discretization is closely related to the second vector form of Green’s theorem
that relates a volume integral to a surface integral, equation 6 is rescaled by
the volume of the large cell to obtain Vcell4t∇2p = Vcell∇ · ~u∗. The right
hand side now represents the quantity of mass flowing in and out of the large
cell within a time step 4t in m3s−1. This can be further rewritten as

Vcell∇ · (~u∗ −4t∇p) = 0. (8)

implying that the ∇p term is most naturally evaluated at the cell faces using
the direct correspondence between the components of ∇p and ~u∗. Moreover,

22

∆x

∆y

ui+1/2,j,k

vi,j+1/2,k

(i,j,k)

∆z

i,j,k−1/2w

p

T,

*

u

u

u

u

5

3

2

u
1
*

*

*

*

*

4

ρ, Φ

Figure 8: Depiction of a large cell neighboring four smaller cells. The u∗i
represent the x components of the intermediate velocity ~u∗ defined at the
cell faces. Right: a single computational cell. The velocity components are
defined on the cell faces. The pressure is defined at the center of the cell.
The density, temperature and level set function are stored at the nodes.

substituting equation 7 into equation 8 implies the desired divergence free
condition

Vcell∇ · ~u = 0. (9)

In order to calculate the divergence of a cell, one can invoke the second
vector form of Green’s theorem to write

Vcell∇ · ~u∗ =
∑

faces

(~u∗face · ~n)Aface, (10)

where ~n is the outward unit normal of the large cell and Aface is the area of a
cell face. In figure 8, the discretization of the x component of the divergence
reads 4x4y4z∂u∗/∂x = u∗2A2 + u∗3A3 + u∗4A4 + u∗5A5 − u∗1A1, where the
minus sign in front of u∗1A1 accounts for the fact that the unit normal points
to the left. Thus, ∂u∗/∂x = ((u∗2 + u∗3 + u∗4 + u∗5)/4− u∗1)/4x. The y and z
directions are treated similarly.

Once, the divergence is computed at the cell center, equation 6 is used
to construct a linear system of equations for the pressure. Invoking again
the second vector form of Green’s theorem, one can write

Vcell∇ · (4t∇p) =
∑

faces

((4t∇p)face · ~n)Aface. (11)

Therefore, once the pressure gradient is computed at every face, we can
carry out the computation in a manner similar to that of the velocity diver-
gence above. There exist different choices in the discretization of (∇p)face,

23

Figure 9: Simulation of an ellipse traveling through a shallow tank of water.
Note how well the octree resolves the thin film. Reprinted from [56].

but only some will yield a symmetric discretization matrix. Efficient it-
erative methods such as PCG (see e.g. [77]) can be applied to symmetric
positive definite matrices offering a significant advantage over methods for
nonsymmetric linear systems. Moreover, since data access for the octree is
not as convenient as for regular grids, there is a strong benefit in designing
a discretization that leads to a symmetric linear system.

Consider the configuration in figure 10. In the case where two cells of
the same size juxtapose each other, standard central differencing defines
the pressure gradient at the face between them, as is the case for py =
(p10 − p1)/4y. Next, consider the discretization of the pressure gradient in
the x direction at the face between cell 1 and cell 2. A standard approach
is to first compute a weighted average value pa by interpolating between
p1 and p10. Then, since standard differencing of p̂x = (p2 − pa)/(.754x)
does not define p̂x at the cell face, but midway between the locations of pa

and p2, a more complex discretization is typically employed. For example,
one can pass a quadratic interpolant through pa, p2 and p6 and evaluate
its derivative at the cell face, see e.g. [16]. However, this approach yields

24

∆ y

x∆

p

p

pp

1

10

62p
a

p
x

^

p
y

p
x

Cell 1

Cell 2

Cell 10

Cell 6

Figure 10: Discretization of the pressure gradient.

a nonsymmetric linear system that is computationally expensive to invert.
The nonsymmetric nature of the linear system comes from the non-locality
of the discretization, i.e. pa depends on p10 and the quadratic interpolation
depends on p6. Consequently, the equation for cell 1 involves both p10 and
p6. It is unlikely that the equation for cell 6 will depend on p1, since cell 6
juxtaposes another cell of the same size, namely cell 2. And even if it did,
the coefficients of dependence would not be symmetric.

The situation can be improved by realizing that O(4x) perturbations in
the pressure location still yield consistent approximations as in [39]. There-
fore defining px = (p2 − pa)/(.754x) at the cell face still yields a con-
vergent approximation, since the location of p̂x is perturbed by a small
amount proportional to a grid cell. Moreover, we can avoid the depen-
dence of pa on values other than p1 by simply setting pa = p1. This corre-
sponds to an O(4x) perturbation of the location of p1, and therefore still
yields a convergent approximation. Thus, the discretization of px is simply
px = (p2 − p1)/(.754x). Moreover, since only p1 and p2 are considered, one
can define px = (p2− p1)/4 where 4 can be defined as the size of the large
cell, the size of the small cell, the Euclidean distance between p1 and p2, etc.
Numerical test indicate that all of these choices converge.

In light of equation 11, px contributes to both row 1 and row 2 of the
matrix representing the linear system of equations, since it is located at the
cell face between cell 1 and cell 2. More precisely, the contribution to row 1

25

Figure 11: Simulation of a milk crown using the particle level set method
on an octree data structure. Surface tension effects are incorporated as can
be seen by the beads forming on the crown. Reprinted from [56].

occurs through the term

4tpxn1Aface = 4t
p2 − p1

4 (1)Aface,

since n1, the x component of the outward normal to cell 1, points to the
right (hence n1 = 1). Likewise, the contribution to row 2 occurs through
the term

4tpxn1Aface = 4t
p2 − p1

4 (−1)Aface,

since n1, the x component of the outward normal to cell 2, points to the left
(hence n1 = −1). Therefore, the coefficient for p2 in row 1 and the coeffi-
cient for p1 for row 2 are identical, namely 4tAface/4. The same procedure
is applied to all faces, and the discretization of the y and z components of
the pressure gradient are carried out in a similar manner. Hence, the dis-
cretization yields a symmetric linear system that can be efficiently inverted
with PCG.

26

Figure 9 shows how well the octree version of the particle level set method
can resolve the thin films created as an ellipse slips through the water. Figure
11 shows similar results for the impact of a milk drop on a shallow layer of
milk. In this calculation, the surface tension effects can be seen in the tips
of the milk crown.

3.3 Second order Accuracy on Octrees

A potential difficulty with the method proposed in [56] is that it computes
a different pressure gradient on each cell face, and also allows a different
velocity on each face. The velocity on a face of a large cell is computed as
the area weighted average of the velocities on the faces of all the adjacent
small cells. Alternatively, in order to properly constrain the velocity field for
interpolation, etc., it is desirable to have the velocity on the large cell face
identical to all the velocities on the adjacent small cell faces. Area weighted
averaging can still be used to compute the velocity on the large cell face,
but this velocity then needs to be assigned to all the small cell faces as well.
This also simplifies the treatment of Neumann (fixed velocity) boundary
conditions, since an entire large cell face can be constrained as opposed to
only portions of it.

If all the small cell faces incident on a large cell face have the same
velocity, it is also important that they have the same pressure gradient when
enforcing incompressibility so that they maintain the same velocity after
being projected to be divergence free. Unfortunately, the method proposed
by [56] yields different pressure gradients for these incident small cells. The
pressure gradient on the large cell face is given by the area weighted average
of the pressure gradients computed on each of the small cell faces, i.e.

(px)L =
∑

s

As

AL

(
ps − pL

4s

)

where (px)L is the pressure gradient on the large cell face, AL is the area
of the large cell face, pL is the pressure in the large cell, the sum is over
all incident small cell faces, As is the area of a small cell face, ps is the
pressure in a small cell, and 4s is the distance associated with a small cell
face pressure gradient (e.g. half the size of the large cell plus the size of the
associated small cell). To compute the pressure gradient flux into the large
cell, (px)L is multiplied by AL. For an incident small cell, [56] uses

(px)s =
ps − pL

4s

27

Figure 12: Initial quadtree refinement used in Poisson solver accuracy test.

as the pressure gradient and computes the flux through the small cell as
As(px)s. Instead, we propose using the pressure gradient of the large cell
for all the small cells as well, i.e. setting (px)s = (px)L so that the velocities
of the small and large cells agree after the velocity field is projected to be
divergence free.

For symmetry, first consider the coupling between the large cell and
an incident small cell. When discretizing the large cell with AL(px)L, the
coefficient of a small cell pressure is As/4s. When discretizing a partic-
ular small cell with Aso(px)L, the coefficient of the large cell pressure is
−Aso/AL

∑
s(−As/4s) where the extra minus sign comes from the fact

that the normal points to the left (assuming the small cells are to the right
of the large cell). If we use the same 4s for all incident small cells, e.g. we
use an area weighted average

4 =
∑

s

As

AL
4s

then 4s factors out of the sum,
∑

s As is equal to and cancels out AL,
and we arrive at Aso/4 yielding symmetry for the coupling between the
large and small cells. We must also consider symmetry between pairs of
small cells incident on the same large cell face, as this new scheme cou-
ples them together as well. When discretizing a particular small cell with
Aso(px)L, the coefficient of another small cell pressure is −AsoAs/(AL4).
Similarly, the contribution cell so makes to another small cell via As(px)L is
−AsAso/(AL4) so the coupling is symmetric.

Although the discretization proposed in [56] is first order accurate, pre-
liminary tests with this new discretization seem to indicate that it is second

28

L1 error order L∞ error order
4.465× 10−3 −− 5.012× 10−3 −−
6.720× 10−4 2.73 9.777× 10−4 2.36
1.200× 10−4 2.49 2.050× 10−4 2.25
2.447× 10−5 2.29 4.626× 10−5 2.15
5.466× 10−6 2.16 1.092× 10−5 2.08
1.289× 10−6 2.09 2.648× 10−6 2.04

Table 1: Poisson solver accuracy on a quadtree grid.

L1 error order L∞ error order
3.241× 10−3 −− 6.990× 10−3 −−
7.219× 10−4 2.17 1.596× 10−3 2.13
1.700× 10−4 2.08 3.841× 10−4 2.06
4.121× 10−5 2.04 9.460× 10−5 2.02
1.014× 10−5 2.02 2.354× 10−5 2.01

Table 2: Poisson solver accuracy on an octree grid.

order accurate. For example, consider ∇2p = ex + ey with an exact solution
of p = ex + ey. We use the initial grid shown in Figure 12, and uniformly
refine a number of times to obtain the results shown in Table 1. Obviously,
the discretization is second order accurate in both the average and max
norms. The method is second order accurate in three spatial dimensions as
well, as illustrated in table 2 which demonstrates this for ∇2p = ex + ey + ez

with an exact solution of p = ex + ey + ez.
Although we were at first surprised by the second order accurate nu-

merical results, [52] and the references therein indicate the plausibility of
this. In fact, it was [52] (and personal communications with the authors)
that directly led to our first attempts to define unique pressure gradients on
cell faces that could be used for both the large cell and all the small cells
incident on a particular face.

Finally, we point out to the reader that uniformly refining an octree may
not be the best way to numerically check accuracy. Repeated refinement of
an octree eventually yields an octree where every large cell has face neighbors
with uniform size, although the ratio between the large and small cells is
no better or worse than that in the initial unrefined octree, i.e. it does not

29

Figure 13: Blue reaction zone cores for large (left) and small (right) values
of the flame reaction speed. Reprinted from [64].

become graded. To see this trivially, consider a large cell in the initial octree
mesh next to any number of smaller cells. Once enough uniform refinements
occur to subdivide the large cell into smaller cells at most the size of its
smallest original neighbor, then all neighbors incident on a given face of a
subdivided child of the large cell are trivially equal in size.

3.4 Low Speed Combustion

In the limit as the thickness of a reaction zone approaches zero, one achieves
a thin flame approximation which is amenable to modeling with a level
set function. The zero isocontour corresponds to the reaction front that
separates the premixed fuel from the hot gaseous products, and the velocity
of the flame front typically depends on both the local unit normal and
curvature. [65] used the level set method and a variant of the ghost fluid
method to simulate thin flame fronts that separate two incompressible fluids.
The ghost fluid method is especially useful here, since the expansion across
the flame front leads to a jump discontinuity in the normal component of
the velocity, in addition to the jumps in density and pressure. Smearing out
this velocity jump with a delta function type of formulation will generally
lead to a loss of incompressibility near the interface. Figure 13 (reprinted
from [64]) shows an example calculation where the zero level set is rendered
as a blue flame core with fuel flowing upward into the flame front.

30

Figure 14: Thin films of water generated as water interacts with a thin
deformable solid object. Reprinted from [42].

4 Conclusions

Level sets have become an established technique for interface tracking. The
original level set method suffers from significant numerical dissipation, but
through the use of higher order, hybrid and adaptive techniques, the method
has become an incredibly powerful and accurate tool used in many applica-
tion areas. Octree based spatial discretization schemes are nearly optimal,
and recent work by [74], [56] and others have demonstrated that efficient
octree based incompressible flow solvers are feasible, even in the context of
complex objects and free surface flows.

There are may promising directions for future work, e.g. figure 14 shows
thin films of water generated as water interacts with a thin deformable solid
object. The strength of the method proposed in [42] lies in the fact that
the solid material can be modeled with any black box method (e.g. a finite
element discretization of a triangle mesh) independent of the solid/fluid
coupling algorithm. Moreover, the newly proposed method works even for
very thin objects that are too thin to be resolved on the background fluid
simulation grid. See figure 15 that illustrates the ability of the method to
prevent water from leaking through the thin deformable solid.

31

Figure 15: Water does not leak through the thin deformable solid even
though it is too coarse to be represented on the background fluid simulation
grid. Reprinted from [42].

References

[1] D. Adalsteinsson and J. Sethian. A fast level set method for propa-
gating interfaces. J. Comput. Phys., 118:269–277, 1995.

[2] D. Adalsteinsson and J. Sethian. The fast construction of extension
velocities in level set methods. J. Comput. Phys., 148:2–22, 1999.

[3] M. J. Aftosmis, M. J. Berger, and J. E. Melton. Adaptive Cartesian
Mesh Generation. In CRC Handbook of Mesh Generation (Contributed
Chapter), 1998.

[4] M. Aivazis, W. Goddard, D. Meiron, M. Ortiz, J. Pool, and J. Shep-
herd. A virtual test facility for simulating the dynamic response of
materials. Comput. in Sci. and Eng., 2:42–53, 2000.

[5] M. Arienti, P. Hung, E. Morano, and J. Shepherd. A Level Set Ap-
proach to Eulerian-Lagrangian Coupling. J. Comput. Phys., 185:213–
251, 2003.

[6] M. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. J. Comput. Phys., 82:64–84, 1989.

[7] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations. J. Comput. Phys., 53:484–512, 1984.

32

[8] J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method
for modelling surface tension. J. Comput. Phys., 100:335–353, 1992.

[9] P. Burchard, L-T. Cheng, B. Merriman, and S. Osher. Motion of
curves in three spatial dimensions using a level set approach. J. Com-
put. Phys., 170:720–741, 2001.

[10] M. Burger and S. Osher. A survey on level set methods for inverse
problems and optimal design. In CAM report (04-02), (in press), 2004.

[11] R. Caiden, R. Fedkiw, and C. Anderson. A Numerical Method for Two
Phase Flow Consisting of Separate Compressible and Incompressible
Regions. J. Comput. Phys., 166:1–27, 2001.

[12] T. Chan and L. Vese. Active contour without edges. IEEE Trans. on
Image Processing, 10:266–277, 2001.

[13] Y.-C. Chang, T. Hou, B. Merriman, and S. Osher. Eulerian captur-
ing methods based on a level set formulation for incompressible fluid
interfaces. J. Comput. Phys., 124:449–464, 1996.

[14] S. Chen, D. Johnson, and P. Raad. Velocity boundary conditions for
the simulation of free surface fluid flow. J. Comput. Phys., 116:262–
276, 1995.

[15] S. Chen, D. Johnson, P. Raad, and D. Fadda. A simple level set
method for solving stefan problems. Int. J. for Num. Meth., 25:749–
778, 1997.

[16] S. Chen, B. Merriman, S. Osher, and P. Smereka. A simple level
set method for solving Stefan problems. J. Comput. Phys., 135:8–29,
1997.

[17] L-T. Cheng, H. Liu, and S. Osher. Computational high frequency
propagation using the level set method with applications to the
semi-classical limit of the Schrodinger equation. Comm. Math Sci.,
1(3):593–621, 2003.

[18] J. Chessa and T. Belytschko. An enriched finite element method and
level sets for axisymmetric two-phase flow with surface tension. Int.
J. Numer. Meth. Engng., 58:2041–2064, 2003.

[19] J. Chessa and T. Belytschko. An extended finite element method for
two-phase fluids. ASME J. of Appl. Mech., 70:10–17, 2003.

33

[20] D.-I. Choi, J. D. Brown, B. Imbiriba, J. Centrella, and P. MacNeice.
Interface conditions for wave propagation through mesh refinement
boundaries. J. Comput. Phys., 193:398–425, 2004.

[21] D. Chopp. Computing minimal surfaces via level set curvature flow.
J. Comput. Phys., 106:77–91, 1993.

[22] D. Chopp. Some improvements of the fast marching method. SIAM
J. Sci. Comput., 223:230–244, 2001.

[23] J. M. Cohen and M. J. Molemaker. Practical simulation of surface
tension flows. In SIGGRAPH 2004 Sketches & Applications. ACM
Press, 2004.

[24] M. Day, P. Colella, M. Lijewski, C. Rendleman, and D. Marcus. Em-
bedded boundary algorithms for solving the poisson equation on com-
plex domains. Technical report, Lawrence Berkeley National Labora-
tory (LBNL-41811), 1998.

[25] A. Dervieux and F. Thomasset. A finite element method for the
simulation of a Rayleigh-Taylor instability. Lecture Notes in Math.,
771:145–158, 1979.

[26] A. Dervieux and F. Thomasset. Multifluid incompressible flows by a
finite element method. Lecture Notes in Phys., 141:158–163, 1981.

[27] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle
level set method for improved interface capturing. J. Comput. Phys.,
183:83–116, 2002.

[28] D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate semi-
Lagrangian particle level set method. Computers and Structures,
83:479–490, 2005.

[29] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering
of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.),
21(3):736–744, 2002.

[30] D. Enright, D. Nguyen, F. Gibou, and R. Fedkiw. Using the particle
level set method and a second order accurate pressure boundary con-
dition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids
Eng. Conf., number FEDSM2003–45144. ASME, 2003.

34

[31] S. Esedoglu and R. Tsai. Threshold dynamics for the piecewise con-
stant mumford-shah functional. CAM report (04-63), 2004.

[32] R. Fedkiw. Coupling an Eulerian fluid calculation to a Lagrangian solid
calculation with the ghost fluid method. J. Comput. Phys., 175:200–
224, 2002.

[33] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory
Eulerian approach to interfaces in multimaterial flows (the ghost fluid
method). J. Comput. Phys., 152:457–492, 1999.

[34] R. Fedkiw, T. Aslam, and S. Xu. The Ghost Fluid Method for Defla-
gration and Detonation Discontinuities. J. Comput. Phys., 154:393–
427, 1999.

[35] N. Foster and R. Fedkiw. Practical animation of liquids. In Proc. of
ACM SIGGRAPH 2001, pages 23–30, 2001.

[36] F. Gibou and R. Fedkiw. A fast hybrid k-means level set algorithm
for segmentation. 4th International Conf. on Stat., Math. and Related
Fields, Honolulu (2005). Stanford Technical Report, November, 2002.

[37] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the
laplace and heat equations on arbitrary domains, with applications to
the stefan problem. J. Comput. Phys., 202:577–601, 2005.

[38] F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach
for the numerical simulation of dendritic growth. J. Sci. Comput.,
19:183–199, 2003.

[39] F. Gibou, R. Fedkiw, L.-T. Cheng, and M. Kang. A second–order–
accurate symmetric discretization of the poisson equation on irregular
domains. J. Comput. Phys., 176:205–227, 2002.

[40] J. Glimm, J. W. Grove, X. L. Li, and N.Zhao. Simple front tracking.
Contemporary Math., 238:133–149, 1999.

[41] D. Greaves. A quadtree adaptive method for simulating fluid flows
with moving interfaces. J. Comput. Phys., 194:35–56, 2004.

[42] E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw. Coupling Water
and Smoke to Thin Deformable and Rigid Shells. ACM Trans. Graph.
(SIGGRAPH Proc.), 24, 2005.

35

[43] F. Harlow and J. Welch. Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface. Phys. Fluids,
8:2182–2189, 1965.

[44] A. Harten, B. Enquist, S. Osher, and S Chakravarthy. Uniformly
high-order accurate essentially non-oscillatory schemes III. J. Comput.
Phys., 71:231–303, 1987.

[45] J. Iversen and R. Sakaguchi. Growing up with fluid simulation on “The
Day After Tomorrow”. In SIGGRAPH 2004 Sketches & Applications.
ACM Press, 2004.

[46] G.-S. Jiang and D. Peng. Weighted ENO schemes for Hamilton-Jacobi
equations. SIAM J. Sci. Comput., 21:2126–2143, 2000.

[47] G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO
schemes. J. Comput. Phys., 126:202–228, 1996.

[48] S. Jin and S. Osher. A level set method for computing multivalued so-
lutions to quasi-linear hyperbolic equations and Hamilton-Jacobi equa-
tions. Comm. Math Sci., 1(3):575–591, 2003.

[49] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of
Hermite data. ACM Trans. Graph. (SIGGRAPH Proc.), 21(3):339–
346, 2002.

[50] M. Kang, R. Fedkiw, and X.-D. Liu. A boundary condition capturing
method for multiphase incompressible flow. J. Sci. Comput., 15:323–
360, 2000.

[51] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature
sensitive surface extraction from volume data. In Proc. of ACM SIG-
GRAPH 2001, pages 56–66, 2001.

[52] K. Lipnikov, J. Morel, and M. Shashkov. Mimetic finite differ-
ence methods for diffusion equations on non-orthogonal non-conformal
meshes. J. Comput. Phys., 199(2):589–597, 2004.

[53] X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory
schemes. J. Comput. Phys., 126:202–212, 1996.

[54] X.D. Liu, R. Fedkiw, and M. Kang. A Boundary Condition Capturing
Method for Poisson’s Equation on Irregular Domains. J. Comput.
Phys., 154:151, 2000.

36

[55] D. Lörstad and Laszlo Fuchs. High-order surface tension vof-model for
3d bubble flows with high density ratio. J. Comput. Phys., 200:152–
176, 2004.

[56] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with
an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.),
23:457–462, 2004.

[57] G. Markstein. Nonsteady Flame Propagation. Pergamon Press, 1964.

[58] V. Mihalef, D. Metaxas, and M. Sussman. Animation and control of
breaking waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics
Symp. on Comput. Anim., pages 315–324, 2004.

[59] C. Min. Local level set method in high dimension and codimension.
J. Comput. Phys., 200:368–382, 2004.

[60] N. Molino, J. Bao, and R. Fedkiw. A virtual node algorithm for
changing mesh topology during simulation. ACM Trans. Graph. (SIG-
GRAPH Proc.), 23:385–392, 2004.

[61] W. Mulder, S. Osher, and J. Sethian. Computing interface motion in
compressible gas dynamics. J. Comput. Phys., 100:209–228, 1992.

[62] D. Mumford and J. Shah. Optimal approximation by piecewise smooth
functions and associated variational problems. Comm. in Pure and
Appl. Math., 42:577–685, 1989.

[63] K. Museth, D. Breen, R. Whitaker, and A. Barr. Level set surface edit-
ing operators. ACM Trans. Graph. (SIGGRAPH Proc.), 21(3):330–
338, 2002.

[64] D. Nguyen, R. Fedkiw, and H. Jensen. Physically based modeling
and animation of fire. In ACM Trans. Graph. (SIGGRAPH Proc.),
volume 29, pages 721–728, 2002.

[65] D. Nguyen, R. Fedkiw, and M. Kang. A boundary condition capturing
method for incompressible flame discontinuities. J. Comput. Phys.,
172:71–98, 2001.

[66] D. Nguyen, F. Gibou, and R. Fedkiw. A fully conservative ghost fluid
method and stiff detonation waves. In 12th Int. Detonation Sympo-
sium, San Diego, CA, 2002.

37

[67] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Springer-Verlag, 2002. New York, NY.

[68] S. Osher and N. Paragios. Geometric Level Set Methods in Imaging,
Vision, and Graphics. Springer-Verlag, 2003. New York, NY.

[69] S. Osher and J. Sethian. Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations. J. Com-
put. Phys., 79:12–49, 1988.

[70] S. Osher and C.-W. Shu. High order essentially non-oscillatory
schemes for Hamilton-Jacobi equations. SIAM J. Num. Anal., 28:902–
921, 1991.

[71] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A PDE-based
fast local level set method. J. Comput. Phys., 155:410–438, 1999.

[72] C. Peskin. Numerical analysis of blood flow in the heart. J. Comput.
Phys., 25:220–252, 1977.

[73] J. E. Pilliod and E. G. Puckett. Second-order accurate volume-of-
fluid algorithms for tracking material interfaces. J. Comput. Phys.,
199:465–502, 2004.

[74] S. Popinet. Gerris: A tree-based adaptive solver for the incompressible
euler equations in complex geometries. J. Comput. Phys., 190:572–600,
2003.

[75] P. Raad, S. Chen, and D. Johnson. The introduction of micro cells
to treat pressure in free surface fluid flow problems. J. Fluids Eng.,
117:683–690, 1995.

[76] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner,
W. Geiger, S. Hoon, and R. Fedkiw. Directible photorealistic liq-
uids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on
Comput. Anim., pages 193–202, 2004.

[77] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing,
1996. New York, NY.

[78] A. Selle, N. Rasmussen, and R. Fedkiw. A vortex particle method
for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH
Proc.), 24, 2005.

38

[79] J. Sethian. A fast marching level set method for monotonically ad-
vancing fronts. Proc. Natl. Acad. Sci., 93:1591–1595, 1996.

[80] J. Sethian. Fast marching methods. SIAM Review, 41:199–235, 1999.

[81] C.-W. Shu and S. Osher. Efficient implementation of essentially non-
oscillatory shock capturing schemes. J. Comput. Phys., 77:439–471,
1988.

[82] C.-W. Shu and S. Osher. Efficient implementation of essentially non-
oscillatory shock capturing schemes II (two). J. Comput. Phys., 83:32–
78, 1989.

[83] S. Song and T. Chan. A fast algorithm for level set based optimization.
In CAM report (02-68), 2002.

[84] A. Staniforth and J. Cote. Semi-Lagrangian Integration Schemes for
Atmospheric Models: A Review. Monthly Weather Review, 119:2206–
2223, 1991.

[85] J. Strain. Fast tree-based redistancing for level set computations. J.
Comput. Phys., 152:664–686, 1999.

[86] J. Strain. Tree methods for moving interfaces. J. Comput. Phys.,
151:616–648, 1999.

[87] M. Sussman. A second order coupled level set and volume-of-fluid
method for computing growth and collapse of vapor bubbles. J. Com-
put. Phys., 187:110–136, 2003.

[88] M. Sussman, A. Almgren, J Bell, P. Colella, L. Howell, and M. Wel-
come. An adaptive level set approach for incompressible two-phase
flows. J. Comput. Phys., 148:81–124, 1999.

[89] M. Sussman and E. Fatemi. An efficient interface-preserving level set
redistancing algorithm and its application to interfacial incompressible
fluid flow. SIAM J. of Scientific Comput., 20:1165–1191, 1999.

[90] M. Sussman, E. Fatemi, P. Smereka, and S. Osher. An improved level
set method for incompressible two-phase flows. Computers and Fluids,
27:663–680, 1998.

[91] M. Sussman and E. G. Puckett. A coupled level set and volume-of-fluid
method for computing 3d and axisymmetric incompressible two-phase
flows. J. Comput. Phys., 162:301–337, 2000.

39

[92] M. Sussman, P. Smereka, and S. Osher. A level set approach for
computing solutions to incompressible two-phase flow. J. Comput.
Phys., 114:146–159, 1994.

[93] H.-Z. Tang, T. Tang, and P. Zhang. An adaptive mesh redistribution
method for nonlinear Hamilton-Jacobi equations in two- and three-
dimensions. J. Comput. Phys., 188:543–572, 2003.

[94] A.-K. Tornberg and B. Engquist. A finite element based level set
method for multiphase flow applications. Comput. and Vis. in Science,
3:93–101, 2000.

[95] A.-K. Tornberg and B. Engquist. Numerical approximations of singu-
lar source terms in differential equations. J. Comput. Phys., 200:462–
488, 2004.

[96] Y-H. Tsai and S. Osher. Level set methods and their applications in
image science. Comm. Math Sci., 1(4):623–656, 2003.

[97] J. Tsitsiklis. Efficient Algorithms for Globally Optimal Trajectories.
In Proc. 33rd Conf. on Decision and Control, pages 1368–1373, 1994.

[98] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories.
IEEE Trans. on Automatic Control, 40:1528–1538, 1995.

[99] S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous,
incompressible, multifluid flows. J. Comput. Phys., 100:25–37, 1992.

[100] G. Ventura, E. Budyn, and T. Belytschko. Vector level sets for desrip-
tion of propagating cracks in finite elements. Int. J. Num. Meth. Eng.,
58:1571–1592, 2003.

[101] M. Wiebe and B. Houston. The tar monster: Creating a character
with fluid simulation. In SIGGRAPH 2004 Sketches & Applications.
ACM Press, 2004.

[102] F.A. Williams. The mathematics of combustion. SIAM, pages 97–131,
1985.

[103] A. Yezzi, A. Tsai, and A. Willsky. A fully global approach to image
segmentation via coupled curve evolution equations. J. of Vis. Comm.
and Image Representation, 13:195–216, 2002.

[104] Y. L. Zhang, K. S. Yeo, B. C. Khoo, and C. Wang. 3d jet impact of
toroidal bubbles. J. Comput. Phys., 166:336–360, 2001.

40

[105] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational level
set approach to multiphase motion. J. Comput. Phys., 127:179–195,
1996.

41

